Mineralisation Processes

Léon Prunelle November 14, 2014

If you haven’t yet quite decided what to ask for for Christmas, perhaps this post will give you some inspiration. It is a gem – editor

Beautiful isn’t it! But what is it, how did it come to be and where can I find more like it?

The Earth is constantly being reshaped by the processes of creation, erosion and sedimentation. If looked at world-wide, there are two different types of “land”, usually dependent upon whether or not glaciation has been involved. Scandinavia, Russia, Canada and parts of Africa are vast shields of eroded bedrock whereas the rest of the world is covered by several kilometres of sediments such as the Alps or the Himalayas. I thought we’d take a closer look at the process I have chosen to label ‘creation’ above. Bear in mind that everything in this article is a simplification and that the true processes are vastly more complex than I make out here!

The formation of new bedrock is driven by intrusions of magma from below. These can either penetrate to the surface where the relatively speaking rapid cooling results in glassy bodies of cooled lava or if they do not, result in the formation of plutons of usually well-differentiated and crystallised bedrock that the processes of erosion will eventually bring to the surface. A special case is where the intrusions result in secondary mineral formation, metamorphism.

Sculpture in porphyry portraying an unidentified Roman tetrarch and Canisp Porhyry showing the large phenocrysts typical of the rock

When large amounts of magma reach the surface and cools, there has been insufficient time for mineralization. Such rocks are characterised by small, rounded grains of minerals known as phenocrysts, usually feldspars. A splendid example of this is the magmatic rock known as porphyry.

Phenocrysts vary in size from microscopic, requiring magnifications of 1,000x or more in order to detect, up to several centimetres in size and serve as identification markers or indicators as to the species of magma erupted. Basalts contain phenocrysts of olivine (the magnesium silicates forsterite, fayalite), augite and plagioclase feldspar. In an aside, the lava samples taken from Holuhraun indicate a relative lack of magnesium, i.e. that the magma had sat long enough for the mineralization processes to have begun. Andesites are home to plagioclase, hypersthene and hornblende, Rhyolites contain orthoclase and quartz, Phonolites host nefeline, leucite and aegirine while sanidine feldspar is found in Thrachytes. In the case of a shallow body of cooling and differentiating magma being broached by a fresh intrusion and erupting such as Laacher See (c. 12,900 B.P.), the crystals ejected yield vital clues to the state of the magma reservoir immediately prior to the intrusion and eruption.

Diabase is often used for ornamental purposes due to its durability and aesthetic qualities such as this giant sphere in Southern Sweden. (Wikimedia, Pål Svensson)

Should magma cool in the intrusion dikes, the resulting mineralization is known as Diabase, usually black in colour. The narrower the dike and the closer to the surface the magma is, the quicker it cools which results in very fine-grained, almost glassy diabase. The wider and deeper the dike is, the slower it cools which results in coarser grains and sometimes phenocrysts such as green tablets of plagioclase.

When magma does not reach the surface but cools, fractionates, differentiates and mineralises deep underground, we refer to it as Plutonic Mineralisation. The first minerals to crystallise out of such melts are those that require both high temperatures and pressures to remain within the melt. Examples of such minerals are magnetite, ilmenite, pyrrhotite, pyrite and millerite. Because these minerals are heavy, they often migrate and conglomerate in certain locations of the body of magma, a process known as differentiation, and may form substantial bodies of mineable ore.

Yosemite National Park, California. A splendid example of plutonic mineralization of granite revealed by erosion.

As the body of magma cools further, the main mineralization processes begin as each mineral reaches the temperature-pressure point where it can no longer remain in solution. The rocks formed at the first stage of this process are the ultramafic and mafic (mafic = magnesium and ferrum/iron rich) gabbros, peridotites and pyroxenites followed by diorites. The first minerals are alkaline, ultramafic and mafic, mainly olivine/olivinite, pyroxenes, alkaline feldspars such as labradorite and anortite and hornblende. These minerals are poor in silicic acid, silica, and their crystallisation makes the remaining magma more acidic. Then follows in order of increasing acidity the muscovites, potassium feldspars and finally granite. To complicate matters, this fractionation requires stable conditions. Should this not be met, the minerals will mix to form only some but not all of the mentioned series of rocks.

Contributed by Deep Thought, this image gives a good idea of the areas below a volcano where mineralisations occur.

Once the main or magmatic mineralisation stage has been completed, there remains a wealth of minerals yet in solution. As the mix continues to cool, they crystallise during the post-magmatic mineralization stage. The remaining minerals are in a hydrous solution of mainly silicates, aluminium, sodium and potassium plus a wealth of other metallic ions whose radii are either too large or too small to have been included into the rocks created by the magmatic mineralization process.

Once the solution drops below about 700C, the pegmatitic mineralisation stage begins which forms coarse-grained, granitic bodies of rock made up of quartz, potassium feldspar, plagioclase (oligoclase and albite), muscovite and biotite. In these pegmatites, well-developed crystals of rarer minerals such as beryl, chrysoberyl, columbite, fergusonite, euxenite, thalenite, gadolinite, uraninite, orthit, tourmaline and topaz. Yes, ladies and gents, we are talking about gems!

Supreme multi-coloured tourmaline gem, trillion cut, and the exceedingly rare Alexandrite variety of chrysoberyl that changes from green in daylight to red under lamp- or incandescent light.

Once the temperature has fallen to about 550C, the pegmatitic mineralisation stage has been completed and the pneumatolytic stage begins. This is dominated by certain ore minerals such as molybdenite, cassiterite, wolframite, sheelite, arsenopyrite plus various iron-, copper- and sulphide ores.

The pneumatolytic stage is in turn succeeded by the hydrothermal stage. The main body-forming mineral is quartz but bodies of calcite, fluorite, siderite and barite may also occur. If you are rock-mining for gold or silver, such a formation is a good place to begin. Other interesting minerals found here are garnet, tourmaline and topaz in gem quality (300-500C), gold and pyrite (200-300C), non-gemstone opal, chalcedony (agate), silver, pyrite, marcasite (50-200C).

Superb crystal specimens of Beryl (variety Heliodor) and rare pink Topaz. The beryl crystal has been etched by the presence of fluorine in the solution after it had crystallised.

Some of the crystals formed during these stages can reach gigantic proportions. In the Ural Mountains, there is a feldspar quarry established on a single specimen. In Brazil, a beryl crystal weighing in at a massive 200 tons (~75 m3) has been found and the World’s largest specimen of garnet at 6 m diameter is found near Arendal in Norway.

Just to give an idea of how much more complex these mineralization processes really are, let’s take a slightly closer look – but not too close – at one of the most common and simple minerals, silicon dioxide, SiO2 or quartz. There are three mineral varieties of silicon dioxide; Quartz, Tridymite and Cristoballite, each of which has α and β varieties, and sometimes even more. The first to form is Tridymite which begins to crystallise at about 870C. Now tridymite can crystallise in seven different crystal habits or forms, neither of which is stable as temperature and pressures drop but transforms to Quartz while the crystal shape usually remains that of the original Tridymite.

Cristobalite spheres formed via devitrification, loss of silica, from the obsidian matrix (5.9×3.8×3.8 cm) from the Monterey Formation, California, USA (Wiki).

Should magma containing Tridymite be re-heated, it may change into β-Cristobalite if the temperature reaches at least 1470C, but the mineral is only stable above this temperature. If the temperature drops below 250C at ambient pressure, α-Cristoballite may form. In spite of β-Cristobalite only being stable above 1470C, the mineral does not automatically revert back to Tridymite (or later to Quartz), because this requires considerable amounts of energy to break the SiO4 tetrahedrons.

(The strength of each Si-O bond is rated at 4.5 eV and there are four of those in the SiO4 tetrahedron Not confused yet? Then read “Bonding in Silicates: Investigation of the Si L Edge by Parallel Electron Energy-Loss Spectroscopy” by Laurence A.J. Garvie & Peter R. Buseck – http://www.minsocam.org/msa/ammin/toc/Articles_Free/1999/Garvie_p946-964_99.pdf )

Phlogopite on typical hexagonal “flaky” crystal of tridymite. Width of photo approximately 4mm. (Collection and photo Evan Chugg)

Below 573C, Quartz is formed. α-Quartz is trigonal in crystal structure, whereas β-Quartz is hexagonal and requires certain impurities in the crystal lattice in order to form. Most quartz is white and opaque due to minute inclusions of gas bubbles or other minerals and is known as Milk Quartz. Pure quartz is colourless and known as Rock Crystal. Because quartz is piezoelectric, huge amounts are required by the electronics industry but only single crystals can be used. Since most crystals that appear single to the naked eye actually are twinned at the crystal lattice level, most are rejected and that is why there is such a plethora on the market. It is calculated that one cubic kilometre of solution at saturation point may deposit as much as 200,000 tons of crystalline quarts. This makes one regard the truly gigantic quartz deposits of Minas Gerais, Brazil, with awe…

A so-called Quartz Sceptre of Rock Crystal from Slovakia (Wiki)

If Rock Crystal is subjected to radiation, the damage done to the crystal structure causes it to turn brown. This variety is known as Smoky Quartz (sometimes sold as “topaz” which it is not). Since good crystal specimens of Smoky Quartz are more desirable, hence worth more, there is a practice of irradiating it. These irradiated crystals are almost always black in colour and some may retain harmful levels of radiation, depending upon which method is used. Other well-known varieties of quartz include the yellow Citrine and the violet Amethyst which both derive their colour from iron impurities within the crystal lattice. Rose Quartz contains manganese impurities (sometimes titanium or iron is present).

But now we have deviated too far from vulcanology via mineralogy into gemmology, a favourite subject of mine but not necessarily yours!


And if you enjoyed this but would like more gems, this one is for you: https://www.volcanocafe.org/gems/

Diamond, regrettably, is not a volcanic produce. But you do need volcanoes to bring them to the surface: https://www.volcanocafe.org/diamond/

13 thoughts on “Mineralisation Processes

  1. My comment on Reykjanes swarm:

    Mostly tectonic.
    But most of Iceland has seen an increase in earthquakes and volcanism probably linked to a hotspot/plume maxima, which will last for some years.

    Reykjanes peninsula is half-way between being a spreading region and a transform region.
    Therefore swarms are common and eruptions less common, but still occur.
    The article linked below says more about this.

    Reykjanes peninsula contains several volcanic systems: 1) Reykjanes partly underwater and extending towards the tip of the peninsula and into Vogar, 2) possibly a separate system near the Blue Lagoon (named Grindavik, the town where a small volcanic mountain is located), 3) Fagradalsfjall (apprently no recorded eruptions in Holocene), 3) Krisuvik (where a large lake is located), 4) Brennisteinsfjoll and Blafjoll (they could be even two systems too), and 5) Hengill

    “It’s a complicated tectonic setting with both transform faults and spreading. Here’s a good one pager summary: https://en.vedur.is/media/norsem/norsem_palli.pdf

    This swarm looks tectonic. Without any deeper analysis I would guess book shelf faulting along two parallel faults. Watch the region in the weeks to come. Strain release often propagates and sets of more of these swarms a few kilometres away.”

  2. Past summer I cut a flow stretched thunderegg. Thundereggs form (mostly) in rhyolite, in a cooling stage, but lava is still capable of flowing. Result was a long stretched one, and after cutting a pleasant surprise was revealed.

    A volcano within a thunderegg! 🤔 😉

    It is always fun trying to understand what happened. I guess it was like this. Due to volume change in the cooling lava, a cavity in the egg was formed. A crack in the eggs shell lessened the underpressure by force, and fragmented the layers (banding shown as flow patterns within the lava), pushed them insidewards.
    The chalcedony filled the cavity probably long after the eruption of the lava, but obviously entered through that crack, beautifully making that volcano cloud within a thunderegg.

    Black Skin Bed, Skull Springs near Harper, OR/USA.

  3. Another volcano included in a thunderegg. Formed in welded tuff this time.

    St. Egidien, Sachsen/Germany.

    • Rob! Did you dig those eggs in Germany? I’m so jealous. I have about 50lbs of Oregon thundereggs both cut and whole from Richardson’s Rock Ranch in Madras. They’re now closed to public digging permanently. I was likely one of the last folks in there last Memorial Day. I think they were closed by the end of July. Wanna get to Priday and White Fir amongst others. I have a 3-some conglomerate thunderegg that features mossy or dendritic growths, druzy, and boytroidal features.

      I’m a rockhound with no shame. 😍😍

  4. Sadly, the only natural gems to be found around here reside on the beach and will slap your face if you offend them. Other than that we have sand intermixed with more sand. Occasionally, if you dig… you may find Limonite. But that is almost indistinguishable from a long rusting discarded auto part.

  5. Thank you for reproducing this article for us to read once more! I learnt a lot from this.

Comments are closed.